【稀疏矩阵】使用torch.sparse模块
Last updated
Last updated
@TOC
目前,torch.sparse和scipy.sparse模块比较支持的主流的稀疏矩阵格式有coo格式、csr格式和csc格式,这三种格式中可供使用的API也最多。
将矩阵中非零元素的坐标和值分开存储在3个数组中,3个数组长度必须相同,表示有n个非零元素。
分 Index Pointers
、Indices
、Data
3个数组存储。
Index Pointers
:第 i
个元素记录这个矩阵的第 i
行的第1个非零值在 Data
数组的起始位置,第 i+1
个元素记录这个矩阵的第 i
行的最后一个非零值在 Data
数组的终止位置(不包含右边界)。因此,这个矩阵的行数等于 len(Index Pointers)-1
,第 i
行非零值的个数等于 Index Pointers[i+1]-Index Pointers[i]
。
Indices
:第 i
个元素记录这个矩阵的第 i
个非零值的列坐标。
Data
:第 i
个元素记录这个矩阵的第 i
个非零值的具体数值,排列顺序严格按照行优先,列次先。
与csr唯一的不同在于列优先,其他规则一模一样。
常规构建
torch中,稀疏矩阵的存储方式记录在 tensor.layout
中,可以通过检查 torch.layout == torch.sparse_coo
来判断是否是coo张量。此外,稠密张量的 layout
等于 strided
。
稠密混合的coo张量
此方案与常规的coo构建方式不同,values
中每个元素可以是一个向量,表示对应坐标的稠密张量,因此,创建出的coo张量也多出了一个维度。
带有重复坐标的coo张量
如果输入的坐标有重复,则创建出的coo张量会自动把坐标重复的元素值相加。此外,可以通过成员函数 .coalesce()
把重复坐标的元素值相加,将这个coo转换成一个不重复的张量;也可以通过 .is_coalesced()
检查这个coo是否存在重复的坐标。
按照 Index Pointers
、Indices
、Data
三个数组的定义构建即可。
M
表示2-D张量,V
表示1-D张量,f
表示标量,*
表示逐元素乘法,@
表示矩阵乘法。M[SparseSemiStructured]
表示一种半结构化的稀疏矩阵,此处不再展开,可以自行去torch官网察看。
torch.mv()
no
M[sparse_coo] @ V[strided] -> V[strided]
torch.mv()
no
M[sparse_csr] @ V[strided] -> V[strided]
torch.matmul()
no
M[sparse_coo] @ M[strided] -> M[strided]
torch.matmul()
no
M[sparse_csr] @ M[strided] -> M[strided]
torch.matmul()
no
M[SparseSemiStructured] @ M[strided] -> M[strided]
torch.matmul()
no
M[strided] @ M[SparseSemiStructured] -> M[strided]
torch.mm()
no
M[strided] @ M[SparseSemiStructured] -> M[strided]
torch.mm()
no
M[sparse_coo] @ M[strided] -> M[strided]
torch.mm()
no
M[SparseSemiStructured] @ M[strided] -> M[strided]
torch.sparse.mm()
yes
M[sparse_coo] @ M[strided] -> M[strided]
torch.smm()
no
M[sparse_coo] @ M[strided] -> M[sparse_coo]
torch.hspmm()
no
M[sparse_coo] @ M[strided] -> M[hybrid sparse_coo]
torch.bmm()
no
T[sparse_coo] @ T[strided] -> T[strided]
torch.addmm()
no
f * M[strided] + f * (M[sparse_coo] @ M[strided]) -> M[strided]
torch.addmm()
no
f * M[strided] + f * (M[SparseSemiStructured] @ M[strided]) -> M[strided]
torch.addmm()
no
f * M[strided] + f * (M[strided] @ M[SparseSemiStructured]) -> M[strided]
torch.sparse.addmm()
yes
f * M[strided] + f * (M[sparse_coo] @ M[strided]) -> M[strided]
torch.sspaddmm()
no
f * M[sparse_coo] + f * (M[sparse_coo] @ M[strided]) -> M[sparse_coo]
torch.lobpcg()
no
GENEIG(M[sparse_coo]) -> M[strided], M[strided]
torch.pca_lowrank()
yes
PCA(M[sparse_coo]) -> M[strided], M[strided], M[strided]
torch.svd_lowrank()
yes
SVD(M[sparse_coo]) -> M[strided], M[strided], M[strided]
以上API中,如果 Layout signature
中提供了 @
或者 *
操作符,就不需要记住API,直接通过操作符即可隐式调用对应的API。如:
需要注意的是,使用操作符在稀疏张量和稠密张量之间乘法运算时,返回的都是稠密张量。如果想要返回稀疏张量,需要显式使用torch.smm()
。
torch同样支持稀疏与稀疏之间的运算,但要求输入的稀疏张量必须具有相同的稀疏结构,否则会报错,返回的稀疏张量的稀疏结构也与输入相同。
乘法运算:
加法运算
Tensor.is_sparse
IsTrue
if the Tensor uses sparse COO storage layout, False
otherwise.
Tensor.is_sparse_csr
IsTrue
if the Tensor uses sparse CSR storage layout, False
otherwise.
Tensor.dense_dim
Return the number of dense dimensions in a sparse tensorself
.
Tensor.sparse_dim
Return the number of sparse dimensions in a sparse tensorself
.
这里打断一下表格,讲解一下dense_dim和sparse_dim的含义。上文中,我们曾构建过稠密混合的coo张量,如下:
那么,对于这个tensor,它的dense_dim为1,sparse_dim为2。
此外,在进行稀疏与稀疏之间的数学运算时,一定要保证稀疏张量的sparse_dim等于2.
继续表格。
Tensor.sparse_mask
Returns a new sparse tensor with values from a strided tensorself
filtered by the indices of the sparse tensor mask
.
Tensor.to_sparse
Returns a sparse copy of the tensor.
Tensor.to_sparse_coo
Convert a tensor to coordinate format.
Tensor.to_sparse_csr
Convert a tensor to compressed row storage format (CSR).
Tensor.to_sparse_csc
Convert a tensor to compressed column storage (CSC) format.
Tensor.to_sparse_bsr
Convert a tensor to a block sparse row (BSR) storage format of given blocksize.
Tensor.to_sparse_bsc
Convert a tensor to a block sparse column (BSC) storage format of given blocksize.
Tensor.to_dense
Creates a strided copy ofself
if self
is not a strided tensor, otherwise returns self
.
Tensor.values
Return the values tensor of a sparse COO tensor.
以下是仅限coo张量的成员:
Tensor.coalesce
Returns a coalesced copy ofself
if self
is an uncoalesced tensor.
Tensor.sparse_resize_
Resizesself
sparse tensor to the desired size and the number of sparse and dense dimensions.
Tensor.sparse_resize_and_clear_
Removes all specified elements from a sparse tensorself
and resizes self
to the desired size and the number of sparse and dense dimensions.
Tensor.is_coalesced
ReturnsTrue
if self
is a sparse COO tensor that is coalesced, False
otherwise.
Tensor.indices
Return the indices tensor of a sparse COO tensor.
以下是仅限csr和bsr张量的成员:
Tensor.crow_indices
Returns the tensor containing the compressed row indices of theself
tensor when self
is a sparse CSR tensor of layout sparse_csr
.
Tensor.col_indices
Returns the tensor containing the column indices of theself
tensor when self
is a sparse CSR tensor of layout sparse_csr
.
以下是仅限csc和bsc张量的成员:
Tensor.row_indices
...
Tensor.ccol_indices
...
add()
add_()
addmm()
addmm_()
any()
asin()
asin_()
arcsin()
arcsin_()
bmm()
clone()
deg2rad()
deg2rad_()
detach()
detach_()
dim()
div()
div_()
floor_divide()
floor_divide_()
get_device()
index_select()
isnan()
log1p()
log1p_()
mm()
mul()
mul_()
mv()
narrow_copy()
neg()
neg_()
negative()
negative_()
numel()
rad2deg()
rad2deg_()
resize_as_()
size()
pow()
sqrt()
square()
smm()
sspaddmm()
sub()
sub_()
t()
t_()
transpose()
transpose_()
zero_()
sparse_coo_tensor
Constructs a sparse tensor in COO(rdinate) format with specified values at the givenindices
.
sparse_csr_tensor
Constructs a sparse tensor in CSR (Compressed Sparse Row) with specified values at the givencrow_indices
and col_indices
.
sparse_csc_tensor
Constructs a sparse tensor in CSC (Compressed Sparse Column) with specified values at the givenccol_indices
and row_indices
.
sparse_bsr_tensor
Constructs a sparse tensor in BSR (Block Compressed Sparse Row)) with specified 2-dimensional blocks at the givencrow_indices
and col_indices
.
sparse_bsc_tensor
Constructs a sparse tensor in BSC (Block Compressed Sparse Column)) with specified 2-dimensional blocks at the givenccol_indices
and row_indices
.
sparse_compressed_tensor
Constructs a sparse tensor in Compressed Sparse format - CSR, CSC, BSR, or BSC - with specified values at the givencompressed_indices
and plain_indices
.
sparse.sum
Return the sum of each row of the given sparse tensor.
sparse.addmm
This function does exact same thing as torch.addmm() in the forward, except that it supports backward for sparse COO matrixmat1
.
sparse.sampled_addmm
Performs a matrix multiplication of the dense matricesmat1
and mat2
at the locations specified by the sparsity pattern of input
.
sparse.mm
Performs a matrix multiplication of the sparse matrixmat1
sspaddmm
Matrix multiplies a sparse tensormat1
with a dense tensor mat2
, then adds the sparse tensor input
to the result.
hspmm
Performs a matrix multiplication of a sparse COO matrixmat1
and a strided matrix mat2
.
smm
Performs a matrix multiplication of the sparse matrixinput
with the dense matrix mat
.
sparse.softmax
Applies a softmax function.
sparse.log_softmax
Applies a softmax function followed by logarithm.
sparse.spdiags
Creates a sparse 2D tensor by placing the values from rows ofdiagonals
along specified diagonals of the output
cat()
dstack()
empty()
empty_like()
hstack()
index_select()
is_complex()
is_floating_point()
is_nonzero()
is_same_size()
is_signed()
is_tensor()
lobpcg()
mm()
native_norm()
pca_lowrank()
select()
stack()
svd_lowrank()
unsqueeze()
vstack()
zeros()
zeros_like()
The following operators currently support sparse COO/CSR/CSC/BSR tensor inputs.
abs()
asin()
asinh()
atan()
atanh()
ceil()
conj_physical()
floor()
log1p()
neg()
round()
sin()
sinh()
sign()
sgn()
signbit()
tan()
tanh()
trunc()
expm1()
sqrt()
angle()
isinf()
isposinf()
isneginf()
isnan()
erf()
erfinv()